If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+3p=0
a = 7; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·7·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*7}=\frac{-6}{14} =-3/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*7}=\frac{0}{14} =0 $
| 34.6+4h~5=8.44 | | 96=80=5x | | 2p+52=14p-44 | | 3(2x+1=4x+9 | | 40-4q=8 | | 6s-58+s+97=180 | | 6s-58=s+97 | | (6/5)x+10=(2x-13) | | x-11=6x-81 | | 9(6x-11)=21 | | 13s-1=14s-3 | | 39-5r=19 | | 3w+-4=w+8 | | 25/x+4-7=2 | | x+24=11x-6 | | 8x=0.6 | | 262=-u+46 | | 2x-100=x-8 | | 3x=54.3 | | -u+29=206 | | 2z-15=5z-99 | | 2x/4+4=x/2+1 | | -1/3(9x-12)=16 | | 15x+52-17x=-5x | | 7u=133 | | 2(5+x)=15+x | | 18x+44+90=180 | | 18w+44=90 | | 3x+82X=21 | | 16x-24=13x | | 17-2p=2p | | 16x-24=13× |